Detection of ionospheric spatial and temporal gradients for ground based augmentation system applications

نویسندگان

  • Swapna Raghunath
  • D Venkata Ratnam
چکیده

Standalone Global Navigation Satellite System (GNSS) is inadequate for precise navigation of aircrafts. Ground-based Augmentation System (GBAS) augments the performance of GNSS for civil aviation by providing differential corrections to the position of an aircraft during takeoff and landing. Ionospheric gradients affect the accuracy of GNSS and they can be detected and characterized from GNSS observations. In this paper, the ionospheric temporal and spatial gradients have been detected and the ionospheric drift velocity has been evaluated from the data recorded by GNSS receivers located at Koneru Lakshmaiah University, Guntur (GNT) and Indian Meteorological Department, Machilipatnam (MPM), Andhra Pradesh, India. Both the stations are chosen as they are situated close to each other and to the Vijayawada Airport. The rate of TEC index (ROTI) and numerical differentiation are applied to detect the ionospheric temporal gradients. Time-step and Stationpair methods are used to detect the spatial gradients. Ionospheric gradients at GNT and MPM stations for the month of January 2015 have been discussed. The gradients are found to have occurred mostly between 2000 and 2200 hrs LT. The maximum value of ionospheric gradient velocity is 473.25 ms. The S4 value is above 0.8 and the phase scintillation value is above 0.7 radians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionospheric Threat Mitigation by Geometry Screening in Ground-Based Augmentation Systems

Large spatial variations in ionospheric delay of Global Navigation Satellite System signals observed during severe ionospheric storms pose potential threats to the integrity of the Ground-Based Augmentation System, which supports aircraft precision approaches and landing. Range-domain monitoring within the Ground-Based Augmentation System ground facility cannot completely eliminate all possible...

متن کامل

Enhancements of Long Term Ionospheric Anomaly Monitoring for the Ground-Based Augmentation System

Extremely large ionospheric gradients can pose a potential integrity threat to the users of ground-based augmentation systems (GBAS). A better understanding of the ionospheric behavior (not limited to that during extreme ionospheric activity) is important in the design and operation of GBAS to meet its integrity and availability requirements. A tool for long-term ionosphere monitoring was devel...

متن کامل

Carrier Phase Ionospheric Gradient Ground Monitor for GBAS with Experimental Validation

This paper describes a Ground Based Augmentation System (GBAS) ground-based monitor capable of instantly detecting anomalous ionospheric gradients at the time of satellite acquisition. The monitor utilizes differential carrier phase measurements across multiple reference station baselines as the basis for detection. Performance analysis shows that the monitor is highly sensitive to the quality ...

متن کامل

Results from Automated Ionospheric Data Analysis for Ground-Based Augmentation Systems (GBAS)

Extremely large ionospheric spatial gradients could cause potential integrity threats to Ground-Based Augmentation System (GBAS) users. The importance of understanding ionosphere behavior is not limited to cases of extreme ionospheric events. Broader knowledge of both nominal and anomalous ionospheric behavior would help improve the design and operation of GBAS. We developed an automated tool f...

متن کامل

Automated Ionospheric Front Velocity Estimation Algorithm for Ground-Based Augmentation Systems

Ionospheric anomalies, which may occur during severe ionospheric storms, could pose integrity threats to Ground-based Augmentation System (GBAS) users [1], [2], [3]. The ionospheric threat for a Local Area Augmentation System (LAAS), a GBAS developed by the U.S. Federal Aviation Administration (FAA), was modeled as a spatially linear, semi-infinite “front” (like a weather front) with constant p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016